

Proudly Operated by Battelle Since 1965

Riverware Modeling in the Deschutes Basin: An Integrated Basin Scale Opportunity Assessment

SARA NIEHUS, MARSHALL RICHMOND, SIMON GEERLOFS

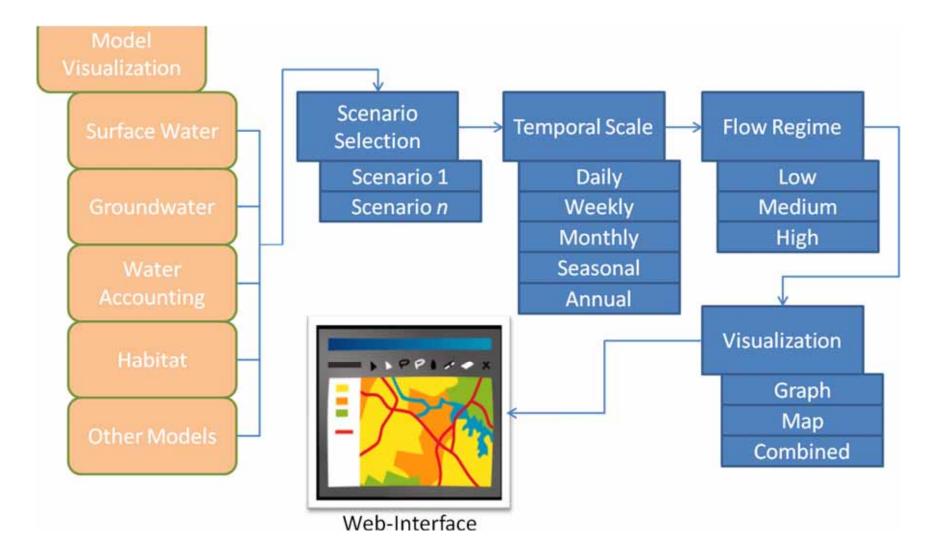
Pacific Northwest National Laboratory Richland, WA

Introduction

- Objectives
- The approach
- Riverware modeling in the Deschutes River Basin, Oregon
- Visualization tool
- Next steps

Objectives of Opportunity Assessment

- To develop an approach for basin scaled identification and analysis of sustainable hydropower and environmental protection/restoration opportunities, while protecting other water users
 - Stakeholder engagement
 - System-scale analysis
 - To inform policy with the basin


The approach

- Generic approach exportability
 - Leverage from existing tools
 - Using datasets consistently available throughout the US
- Customization
 - Stakeholders identified challenges
 - Based on hydro-climatological characteristics of the basin
- System-scale analysis:
 - Hydrology modeling
 - Water resource management
 - Development of scenarios for identifying opportunities or mitigating issues
- Visualization
 - Model outputs that feed into a decision support/data visualization system

The approach

Project Location

- The Upper Deschutes/Crooked River Basin located in Central Oregon
- 7 irrigation districts of which 90 % of water use is for Agriculture
- Major irrigation reservoirs in both sub basins
- Complex environmental and regulatory issues
- Multiple stakeholder groups engaged in environmental and water use planning
- Large potential for small hydropower opportunities

Basin Opportunities

Hydropower

- Adding turbines to existing dams without hydropower capability
- In canal and conduit small hydropower
- Flow shaping to firm power generation at Pelton-Round Butte facilities

Environmental

- Enhance flows below reservoirs
- Habitat restoration and water quality improvements
- Assist in environmental planning process through application of modeling tools and data aggregation

Basin Scale tasks

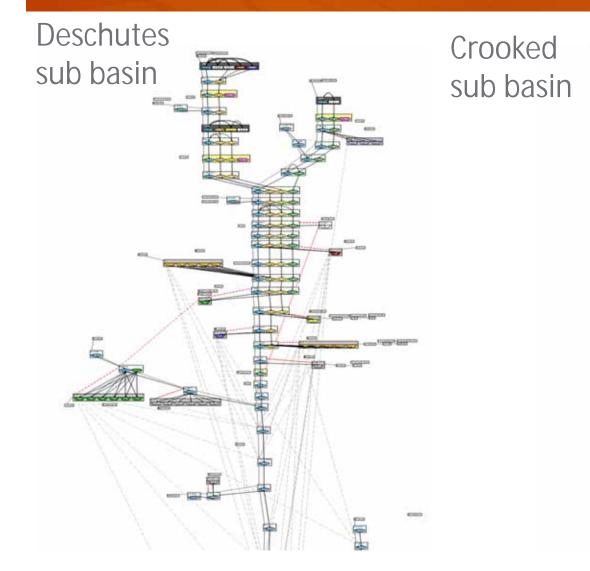
- Model development
- Modeling scenarios
- Visualization

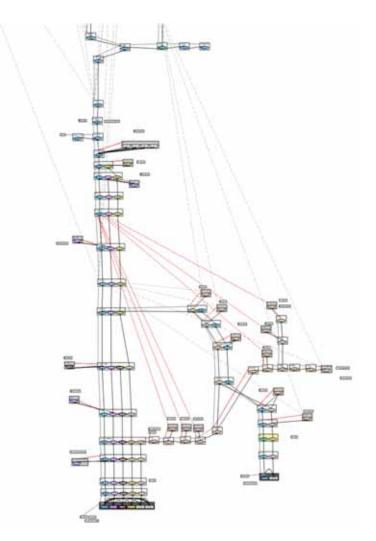
The Riverware Modeling

Why Riverware?

- Simulated hydropower on a daily time step
- Incorporated water rights into water accounting
- Integrates surface and groundwater hydrology
- Tool used by many agencies within the basin
- ► Water resource modeling:
 - Existing MODSIM monthly set up for the basin
 - Monthly Surface and Groundwater flows

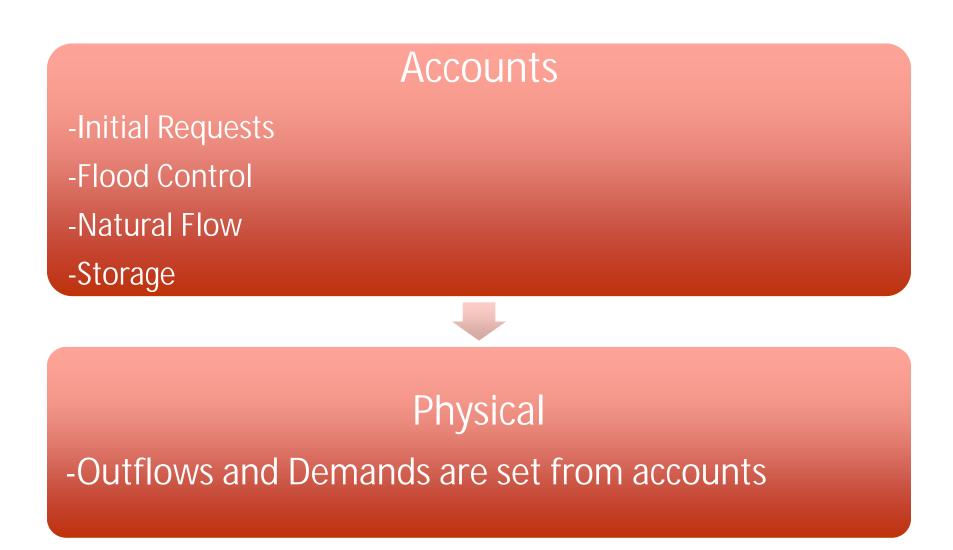
Riverware Modeling




31 Diversions (water user objects)

- 54 accounts
 - 36 Natural Flow
 - 18 Storage
- 5 Dams with Hydropower
- 8 inline Hydropower objects
- 3 pumping systems
- Over 20 groundwater return flow locations

Riverware Modeling



Rule order

Riverware Calibration

	Storage					
	Observed vs. 2012 USBR MODSIM Simulated			Observed vs. Riverware Simulated Storage		
Reservoir	Bias (acre -ft.)	MAE (acre-ft.)	R^2	Bias (acre -ft.)	MAE (acre-ft.)	R^2
Crane	506	5,155		2,485	5,885	
Crescent	788	6,193		-3,159	6,084	
Wickiup	-2,613	21,451		-22,823	25,448	
Prineville	-6,299	13,832		-157	17,258	
Ochoco	-2,931	6,586		3,475	5,739	
Discharge						
	Observed vs. 2012 USBR MODSIM Simulated			Observed vs. Riverware Simulated Discharge		
Reservoir	Bias (cfs)	MAE (cfs)	R^2	Bias (cfs)	MAE (cfs)	R^2
Crane	0.89	60.34		5.57	70.24	
Crescent	1.23	22.17		0.93	22.03	
Wickiup	-0.03	111.70		34.71	209.34	
Prineville	-13.75	121.51		6.30	135.99	
Ochoco	10.81	43.32		-10.01	33.21	
BENO	-33.29	100.330		19.494	211.907	
DEBO	-407.722	474.897		-216.476	324.768	

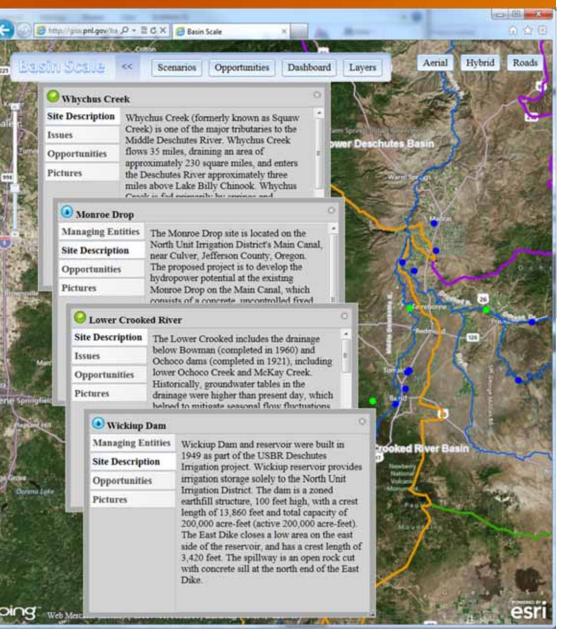
Scenarios

Scenarios were ran from 1928 to 2008 Natural Flow conditions

Baseline (current Conditions)

- Deschutes River Integrated
 - Adding proposed hydropower facilities
 - Increasing Wickiup Reservoirs outflow
 - 25cfs (current minimum)
 - 100, 175, 250, and 350
 - Decreased water supply to major irrigators
 - 10 and 20% supply reduction
- Crooked River Integrated
 - Added proposed hydropower
 - No Environmental scenarios could be agreed on within the sub basin due to pending legislation

Visualization Tool



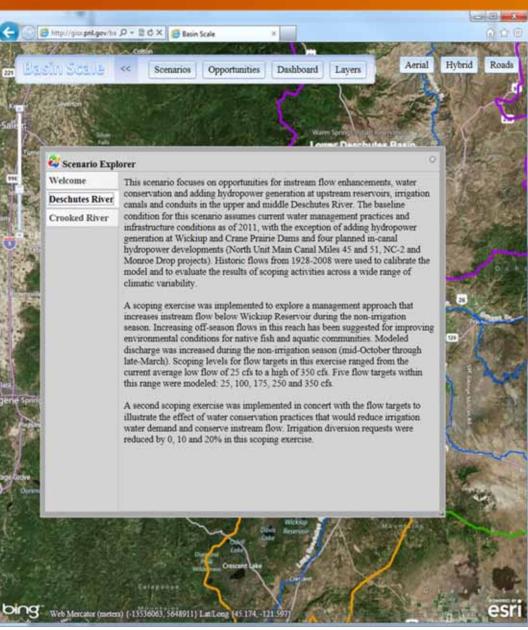
Proudly Operated by Battelle Since 1965

- Visualization tool has the following features presented on an online forum :
 - Interactive basin map
 - Layers like roads, aerial and site photos, gage data

Opportunity explorer

 Detail site specific environmental and hydropower opportunities

Visualization tool

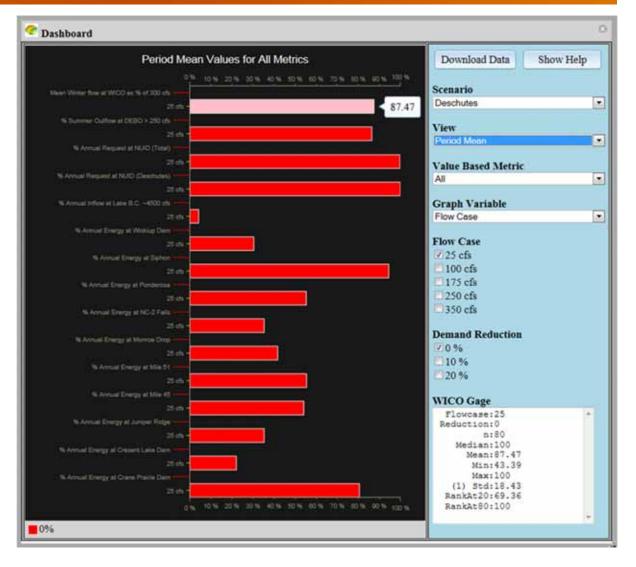

Proudly Operated by Battelle Since 1965

Scenario explorer

Site specifically describes the modeling scenarios and leads the user through data of model results

Model Results Dashboard

Allows user to compare and contrast modeling scenarios



Visualization

Model Results Dashboard

Allows user to compare and contrast modeling scenarios using value based metrics as well as download modeling data results

- The model will be housed with the Bureau of Reclamation Pacific Northwest Region
- Provide continual guidance with the use of the model and continue to engage with stakeholders within the basin

QUESTIONS?

